Skip to content

Complex Dialect

Refer to the official documentation for more details.

Reactant.MLIR.Dialects.complex.abs Method

abs

The abs op takes a single complex number and computes its absolute value.

Example

mlir
%a = complex.abs %b : complex<f32>
source
Reactant.MLIR.Dialects.complex.add Method

add

The add operation takes two complex numbers and returns their sum.

Example

mlir
%a = complex.add %b, %c : complex<f32>
source
Reactant.MLIR.Dialects.complex.angle Method

angle

The angle op takes a single complex number and computes its argument value with a branch cut along the negative real axis.

Example

mlir
     %a = complex.angle %b : complex<f32>
source
Reactant.MLIR.Dialects.complex.atan2 Method

atan2

For complex numbers it is expressed using complex logarithm atan2(y, x) = -i * log((x + i * y) / sqrt(x2 + y2))

Example

mlir
%a = complex.atan2 %b, %c : complex<f32>
source
Reactant.MLIR.Dialects.complex.bitcast Method

bitcast

Example

mlir
     %a = complex.bitcast %b : complex<f32> -> i64
source
Reactant.MLIR.Dialects.complex.conj Method

conj

The conj op takes a single complex number and computes the complex conjugate.

Example

mlir
%a = complex.conj %b: complex<f32>
source
Reactant.MLIR.Dialects.complex.constant Method

constant

The complex.constant operation creates a constant complex number from an attribute containing the real and imaginary parts.

Example

mlir
%a = complex.constant [0.1, -1.0] : complex<f64>
source
Reactant.MLIR.Dialects.complex.cos Method

cos

The cos op takes a single complex number and computes the cosine of it, i.e. cos(x), where x is the input value.

Example

mlir
%a = complex.cos %b : complex<f32>
source
Reactant.MLIR.Dialects.complex.create Method

create

The complex.create operation creates a complex number from two floating-point operands, the real and the imaginary part.

Example

mlir
%a = complex.create %b, %c : complex<f32>
source
Reactant.MLIR.Dialects.complex.div Method

div

The div operation takes two complex numbers and returns result of their division:

mlir
%a = complex.div %b, %c : complex<f32>
source
Reactant.MLIR.Dialects.complex.eq Method

eq

The eq op takes two complex numbers and returns whether they are equal.

Example

mlir
%a = complex.eq %b, %c : complex<f32>
source
Reactant.MLIR.Dialects.complex.exp Method

exp

The exp op takes a single complex number and computes the exponential of it, i.e. exp(x) or e^(x), where x is the input value. e denotes Euler's number and is approximately equal to 2.718281.

Example

mlir
%a = complex.exp %b : complex<f32>
source
Reactant.MLIR.Dialects.complex.expm1 Method

expm1

complex.expm1(x) := complex.exp(x) - 1

Example

mlir
%a = complex.expm1 %b : complex<f32>
source
Reactant.MLIR.Dialects.complex.im Method

im

The im op takes a single complex number and extracts the imaginary part.

Example

mlir
%a = complex.im %b : complex<f32>
source
Reactant.MLIR.Dialects.complex.log Method

log

The log op takes a single complex number and computes the natural logarithm of it, i.e. log(x) or log_e(x), where x is the input value. e denotes Euler's number and is approximately equal to 2.718281.

Example

mlir
%a = complex.log %b : complex<f32>
source
Reactant.MLIR.Dialects.complex.log1p Method

log1p

The log op takes a single complex number and computes the natural logarithm of one plus the given value, i.e. log(1 + x) or log_e(1 + x), where x is the input value. e denotes Euler's number and is approximately equal to 2.718281.

Example

mlir
%a = complex.log1p %b : complex<f32>
source
Reactant.MLIR.Dialects.complex.mul Method

mul

The mul operation takes two complex numbers and returns their product:

mlir
%a = complex.mul %b, %c : complex<f32>
source
Reactant.MLIR.Dialects.complex.neg Method

neg

The neg op takes a single complex number complex and returns -complex.

Example

mlir
%a = complex.neg %b : complex<f32>
source
Reactant.MLIR.Dialects.complex.neq Method

neq

The neq op takes two complex numbers and returns whether they are not equal.

Example

mlir
%a = complex.neq %b, %c : complex<f32>
source
Reactant.MLIR.Dialects.complex.pow Method

pow

The pow operation takes a complex number raises it to the given complex exponent.

Example

mlir
%a = complex.pow %b, %c : complex<f32>
source
Reactant.MLIR.Dialects.complex.powi Method

powi

The powi operation takes a base operand of complex type and a power operand of signed integer type and returns one result of the same type as base. The result is base raised to the power of power.

Example

mlir
%a = complex.powi %b, %c : complex<f32>, i32
source
Reactant.MLIR.Dialects.complex.re Method

re

The re op takes a single complex number and extracts the real part.

Example

mlir
%a = complex.re %b : complex<f32>
source
Reactant.MLIR.Dialects.complex.rsqrt Method

rsqrt

The rsqrt operation computes reciprocal of square root.

Example

mlir
%a = complex.rsqrt %b : complex<f32>
source
Reactant.MLIR.Dialects.complex.sign Method

sign

The sign op takes a single complex number and computes the sign of it, i.e. y = sign(x) = x / |x| if x != 0, otherwise y = 0.

Example

mlir
%a = complex.sign %b : complex<f32>
source
Reactant.MLIR.Dialects.complex.sin Method

sin

The sin op takes a single complex number and computes the sine of it, i.e. sin(x), where x is the input value.

Example

mlir
%a = complex.sin %b : complex<f32>
source
Reactant.MLIR.Dialects.complex.sqrt Method

sqrt

The sqrt operation takes a complex number and returns its square root.

Example

mlir
%a = complex.sqrt %b : complex<f32>
source
Reactant.MLIR.Dialects.complex.sub Method

sub

The sub operation takes two complex numbers and returns their difference.

Example

mlir
%a = complex.sub %b, %c : complex<f32>
source
Reactant.MLIR.Dialects.complex.tan Method

tan

The tan op takes a single complex number and computes the tangent of it, i.e. tan(x), where x is the input value.

Example

mlir
%a = complex.tan %b : complex<f32>
source
Reactant.MLIR.Dialects.complex.tanh Method

tanh

The tanh operation takes a complex number and returns its hyperbolic tangent.

Example

mlir
%a = complex.tanh %b : complex<f32>
source